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Abstract:

Determining catchment responses to climate signals gives insight into the potential effects of climate change. This study tested
the hypothesis that a 28-year time series of water yields from four headwater catchments in the Turkey Lakes Watershed (TLW),
Ontario contains signals of non-stationary climate change and naturally occurring stationary climate oscillations and that the
effects of these signals are greater in catchments with lower rates of change in water loading and lower water storage capacity
(small wetlands). Non-stationary trends explained 0%, 18%, 44%, and 52% of the variance in the water yields of the four
catchments. Wavelet analysis using Morlet wavelets identified stationary responses at multiple temporal scales, increasing the
amount of variance explained to 56%, 63%, 76%, and 81% when combining stationary and non-stationary models. The
catchment with low water loading and low water storage was most sensitive to non-stationary and stationary signals, suggesting
that these catchments act as sentinels to detect climatic signals. Wavelet coherence analysis revealed correlations between global
climate oscillation indices and water yield. The Atlantic Multidecadal Oscillation (AMO) index was strongly correlated with both
temperature and precipitation (R2 = 0.46, P< 0.001 and R2 of 0.34, P< 0.001, respectively). Temperature in the TLW increased
by 0.067 �C per year from 1981 to 2008, but approximately 0.037 �C of this increase can be explained by the AMO index. While
it is likely that anthropogenic climate change impacts water yields, it is important to account for multiple nested climate
oscillations to avoid exaggerating its effects. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Climate effects on water resources continue to be a major
agenda among hydrologists, ecologists, and policy makers.
Catchments in various regions have been affected by non-
stationary climate warming linked to anthropogenic activ-
ities (Arnell, 2004; Christensen et al., 2004; Chen et al.,
2006; Pike et al., 2008; Zwiers et al., 2011). Meanwhile,
catchments have also been affected by stationary climate
patterns, driven by large-scale climatic oscillations caused
by fluctuations in sea surface temperature or sea level
pressure (Keener et al., 2010; Kahya, 2011; Niedzielski,
2011) [e.g. Multivariate El Niño Southern Oscillation
(ENSO) Index (MEI), Atlantic Multidecadal Oscillation
(AMO), Northern Atlantic Oscillation (NAO), and Pacific
Decadal Oscillation (PDO)], although there is some
evidence that these oscillationsmay not be strictly stationary
[e.g. ENSO (Gaucherel, 2010)]. Observed temporal vari-
ability in water yields may reflect the combined effect of
non-stationary climate trends and stationary climate oscilla-
tions withmultiple periodicities (Zhou et al., 2008). There is
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a critical need to discriminate between non-stationary and
stationary signals in changing water yields from these
catchments.
Discriminating between non-stationary responses (deter-

ministic responses where the statistical mean and variance
change with time, predictably and unpredictably) and
stationary responses (stochastic responses where the
statistical mean and variance do not change with time) of
catchments is an important step to better understand and
predict the often different responses of catchments and their
water yields to climate (Jones et al., 2012). Individual
statistical analyses have emerged that enable us to resolve
this complexity, including wavelet analysis where decom-
position of a time series into a time-frequency space enables
not only identification of the dominant wavelets (i.e.
periodicities) in the time series, but also estimation of how
the dominant wavelets change over time (Torrence and
Compo, 1998; Santos and DeMorais, 2008). Wavelet cross
coherence analysis between the spectra of large-scale
climatic oscillations and water yields can be used to identify
specific climatic oscillations responsible for stationary
signals in the water yield time series. Guiding principles
are needed to combine these statistical analyses to
discriminate non-stationary from stationary signals in
catchment responses to climate.



Figure 1. The forest eco-regions of Ontario
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Small, headwater catchments have great potential to
serve as sentinels for climate change because of their
ability to respond rapidly to changing environmental
conditions including freeze–thaw and flood–drought
transitions and trends (Strand et al., 2008). Headwater
catchments typically have high topographic positions,
collect precipitation from a relatively small area, and have
thin soil layers for moisture storage, making their
hydrologic regime more sensitive to climate-related
changes in environmental conditions compared to the
higher order catchments into which they drain (Feminella,
1996; Winter, 2000; Eimers et al., 2004). Furthermore,
headwater catchments contribute a large amount of water
(Kirby, 1978; Haycock et al., 1993) and constitute a large
spatial extent (Meyer and Wallace, 2001; Sidle et al.,
2000; Bishop et al., 2008) of larger catchments, and so
have considerable influence on what may happen to
higher order catchment water yields. In addition, these
headwater catchments serve as sources of sediments,
nutrients, and biota to downstream reaches of larger
catchment systems (Rabeni and Wallace, 1998; Gomi
et al., 2002; Wipfli and Gregovich, 2002; Clarke et al.,
2008). Therefore, scientific investigations of the effects
of climate-related environmental changes on water,
sediment, and nutrient export would benefit from
consideration of headwater catchments.
The purpose of this paper is to present an analytical

framework for discriminating non-stationary and stationary
signals in water yield responses of headwater catchments in
a forested landscape where climatic variability is evident,
but little is known about its effect on sustainability of water
yields. The (null) hypothesis that climate has no significant
effect on water yields was tested using a 28-year time series
ofwater yields (the longest availablewithin the region) from
headwater catchments. If climate does have an effect, then a
corollary to the hypothesis is that stationary signals are more
important than non-stationary signals in water yields. Also,
if climate does have an effect, then a corollary to the
hypothesis is that sensitivity to these signals is greater in
catchments that have lower rates of change in water loading
and lower water storage capacity. By examining the ability
of headwater catchments to respond to both directional
climate change and non-directional naturally occurring
climatic oscillations, it may be possible to infer what types
of catchments may be the most sensitive sentinels of climate
change andmay see the most extreme impacts of continuing
climate warming.
STUDY AREA

Located on the northern edge of the Great Lakes-
St. Lawrence Forest Region in the Algoma Highlands
of Central Ontario (Figure 1), the Turkey Lakes
Watershed (TLW) is about 60 km north of Sault Ste.
Marie (47�80’30”N, 84�82’50”W; Figure 2). In 1980, the
TLW was established as a long-term experimental
research station by Canadian federal government agencies
to investigate the potential effects of acid rain and climate
Copyright © 2012 John Wiley & Sons, Ltd.
change on terrestrial and aquatic ecosystems (Jeffries
et al., 1988). Within the TLW, a series of headwater
catchments representing the range of natural variation in
geologic and geomorphic conditions have been continu-
ously monitored for hydrology and biogeochemistry by
Natural Resources Canada-Canadian Forest Service and
Environment Canada scientists.
The TLW rests on Precambrian silicate greenstone

formed from metamorphosed basalt, with small outcrops
of felsic igneous rock (Giblin and Leahy, 1977). The
overall relief is 400 m, from 644 m above sea level at the
summit of Batchawana Mountain to 244 m above sea
level at the outlet to the Batchawana River. Overlying the
bedrock is a thin and discontinuous till, ranging in depth
from <1 m at higher elevations to 1–2 m at lower
elevations (Jeffries and Semkin, 1982), although till
deposits up to 65 m occasionally occur in bedrock
depressions (Elliot, 1985). The podzolic soils that have
developed in the tills follow a generalized sequence of
thin and undifferentiated near the ridge, gradually
thickening, differentiating, and increasing in organic
content on topographic benches and toward the stream
(Nicolson, 1988). Highly humified organic deposits occur
in wetlands (Canada Soil Survey Committee, 1978;
Cowell and Wickware, 1983).
The watershed is covered by a northern-tolerant

hardwood forest dominated by sugar maple (Acer
saccharum Marsh.) (Wickware and Cowell, 1985). There
have been no disturbances since the 1950s, except an
experimental harvest in 1998 on a portion of the
watershed. Average stand density (904 stems ha�1),
dominant height (20.5 m), diameter at breast height (15.3
cm), and basal area (25.1 m2 ha�1) are relatively uniform
across the uplands, with stand density increasing and
dominant height decreasing in the wetlands (Jeffries
et al., 1988). White pine (Pinus strobes L.), white spruce
(Picea glaucaMoenchVoss.), ironwood (Ostrya virginiana
Hydrol. Process. 27, 669–686 (2013)



Figure 2. The Turkey Lakes Watershed

Figure 3. Annual hydroclimatic variation in the Turkey Lakes Watershed
region
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(Mill.) K. Koch), and yellow birch (Betula alleghaniensis
Britton) comprise less than 10%of basal area in the uplands.
The sparse understory of upland stands is dominated (95%)
by saplings and seedlings of sugar maple as well as a variety
of herbs and ferns.Wetland stands are mixtures of black ash
(Fraxinus nigra Marsh.), eastern white cedar (Thuja
occidentalis L.), red maple (Acer rubrum L.), balsam fir
(Abies balsamea (L.) Mill.), yellow birch, and tamarack
(Larix laricina (DuRoi) K. Koch.). The understory in the
wetlands is composed of the seedlings and saplings of
overstory trees and various herbs and ferns. There has been
no to minimal natural or anthropogenic disturbance to the
forest cover within these four catchments.
The watershed is influenced by a continental climate

with average 28-year annual precipitation of 1200 mm
and average annual temperature of 5 �C (Figure 3).
Headwater catchments are influenced by a snowpack that
persists from late November, early December through to
late March, early April and peak flows that occur during
snowmelt and again during autumn storms. Future climate
scenarios for the area predict temperatures increasing by
1.0 to 3.0 �C by 2040 and 2.5 to 4.5 �C by 2070, and
precipitation increasing by 0 to 10% by 2040 and 0 to
20% by 2070 (Price et al., 2011). The four selected
catchments, c35, c38, c47, and c50, exhibit a gradient in
water loading in the form of rain and snow and in water
storage in wetlands (percent wetlands by area) (Figure 4,
Table I). Catchments c35 and c47 have low water storage
(1.1% and 0.4%, respectively), while c38 and c50 contain
high water storage (20.5% and 10.0%, respectively)
(Creed et al., 2008). All four catchments receive more
precipitation than the site of the long-term meteorological
station (Semkin et al., 2001; unpublished data). Both c35 and
c38 are at lower elevations and receive about 5% less
precipitation than c47 and c50, but there is considerable inter-
annual variation (Semkin et al., 2001; unpublished data).
Copyright © 2012 John Wiley & Sons, Ltd.
METHODS

Analytical framework

The analytical framework for analyzing non-stationary
(linear trends) and stationary (non-linear oscillations)
signals from the computed yearly water yield time series
is presented in Figure 5.

Non-stationary linear trends

Annual data were used because daily, monthly, and
seasonal water yield data were too variable and linear trends
were not statistically significant (data not shown). Daily
water yield data from four catchments (c35, c38, c47, and
c50) in the TLW were summed to derive a yearly time
series of water yield running from 1981 to 2008 water years
(June–May, with the water year indicated as the calendar
year in which the water year began). The computed yearly
time series of water yields were analyzed for non-
Hydrol. Process. 27, 669–686 (2013)



Figure 4. Topographic maps and descriptions of the four catchments
selected from the Turkey Lakes Watershed for analysis

Figure 5. Flow chart summarizing the analytical steps
Table I. Characteristics of selected catchments in the Turkey

Lakes Watershed

Characteristics c35 c38 c47 c50

Size (ha) 4.02 6.46 3.43 9.47
% Wetland 1.06 20.54 0.36 10.03
Elevation of weir (masl) 386 415 503 507
Slope (degrees) 19.36 13.51 20.84 13.45

672 S. G. MENGISTU ET AL.
stationarity, which was then removed. The detrended
portions were then further studied for the presence of
multiple stationary signals using wavelet analysis.

Stationary non-linear oscillations

Following the method outlined in Torrence and Compo
(1998), wavelet power spectrums of the detrended portion
of the yearly water yield data were derived for the
catchments under investigation. The spectrums were
computed by convoluting each time series with a scaled
and translated version of a transforming wavelet function,
usually known as the ‘mother wavelet.’ Assuming an
equal time interval of Δt in a time series Xn (n = 0, 1, . . .,
N� 1), the corresponding wavelet function, co(�) (� is a
non-dimensional time parameter on which the function
depends), must have a zero mean and be localized in time
and frequency space (Farge, 1992). A Morlet wavelet was
chosen due to its extensive applications in similar studies
Copyright © 2012 John Wiley & Sons, Ltd.
involving hydroclimatic time series analysis. In addition to
its ability to represent the shape of hydrological signals very
well (Kang and Lin, 2007), Morlet wavelets provide
adequate time and superior frequency resolution compared
to other wavelet types (Labat, 2005; Soniat et al., 2006).
The Morlet wavelet is characterized by a Gaussian

modulated plane wave:

co �ð Þ ¼ p�
1
4eioo�e�

�2

2 (1)

Where oo is the non-dimensional angular frequency,
which by default is taken to be 6 to satisfy the
admissibility condition (Farge, 1992).
The continuous wavelet transform of time series Xn, for

each scale s at all n, with respect to the wavelet function
co(�), is mathematically represented as Equation (2).

Wn sð Þ ¼ 1
N

XN�1

n0¼0

xn0c � �
0 � �

� �
Δt

s

" #
(2)

Where Wn (s) stands for wavelet transform coefficients,
c for the normalized wavelet, (*) for the complex
conjugate, s for wavelet scale, n for localized time index,
and n0 for translated time index.
Hydrol. Process. 27, 669–686 (2013)
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The transformed signal, Wn (s), is a function of the
wavelet scale and translation parameters found by
conducting the convolution N (the number of data in
the time series) times for each scale. Other than Equation
(2), a faster way of performing such a transform is to
simultaneously calculate all the N convolutions in a
Fourier space using discrete Fourier transform of Xn
Equation (3).

_xk ¼ 1
N

XN�1

n¼0

xne
�2pikn=N (3)

Where k = 0. . . N is the frequency index. In the Fourier
space, the wavelet transform Equation (2) can be
expressed as Equation (4).

Wn sð Þ ¼
XN�1

k¼0

_xk
_

c � sokð ÞeioknΔt (4)

Where
_

c soð Þ is Fourier transform of a function c(t/s)
and ok is an angular frequency defined as Equation (5).

ok ¼
2pk
NΔt

if k≤
N

2

� 2pk
NΔt

if k >
N

2

8><
>: (5)

The wavelet power spectrum was calculated as the
square of the absolute value of the wavelet transform,
|Wn (s)|2.
The global wavelet power spectrum (GWPS)-based

analysis is considered a simple and robust technique for
characterizing variability in time series (Santos and De
Morais, 2008). Once the wavelet power spectrums were
calculated, the GWPS values were computed by time
averaging of wavelet spectrum values over all the local
spectra. Generally, in wavelet-based time series analysis,
it is believed that the GWPS values provide useful
information in terms of assessing the scale(s) (or period
(s)) contributing most to the spectral energy of the time
series under investigation. Scales with large GWPS
values were considered to contribute more spectral
energy, while the contribution of small GWPS scales
were assumed to be little or insignificant, The GWPS
values were, therefore, used to identify scale(s) with high
potential of periodic signals of stationary nature.
Inverse wavelet transfer of the forward wavelet transform

Equation (2) above was employed to reconstruct signals
based on the coefficients of scales identified to have
dominant GWPS. The inverse wavelet function is mathe-
matically represented as Equation (6).

xn ¼
ZN
0

ZSk
S1

Wn sð Þ: �
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� �
s

" #
dsdn

s2
(6)
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Maintaining the coefficients of the chosen scale(s) while
replacing all scale coefficients by zero and performing
backwards (inverse) wavelet transform on the result
generated the signals characterizing the identified scale.
When choosing two or more consecutive scales, the inverse
transform function builds the reconstructed signal as the
sum of wavelets of different scales, s, at localized time, n.
Autocorrelation tests were used to examine if there was

temporal autocorrelation between yearly time series of
water yield. The autocorrelation was tested using
Matlab’s autocorr function and the confidence bounds
were found using (7).

þ=-
nSTDs

sqrt Nð Þ (7)

where nSTDs is the number of standard deviations used in
determining significance, and N is the number of
independent sample data points. Two standard deviations
were used to approximate 95% significance.

Searching for multiple stationary signals

Stationary signals were extracted from the water yield
data time series using a step-wise methodology involving
multiple cycles. The first step of the first cycle used the
wavelet power spectrum of the detrended water yield time
series to identify the dominant periodicity in the detrended
time series, which was followed by inverse wavelet
transform to extract the signal of dominant periodicity
corresponding to scale(s) of peak GWPS values. The
extracted signal was then fitted with a periodic function to
model and statistically analyse the stationarity of the
extracted signal. The same steps were followed in the
second cycle using the residual of the detrended data
(detrended water yield minus modeled stationary signal
from cycle 1) as the input to the wavelet analysis. In the
following cycles, subsequent residuals (input data of the
previous cycle minus modeled stationary signal in the same
cycle) were similarily analyzed.
For each cycle, the following ‘rules’ were used to

identify existing stationary signals: (1) A baseline of
GWPS values was determined to select scales with the
largest GWPS peaks above the set baseline, (2) Peak
GWPS values were only considered for scales that were
able to complete at least two full cycles in the available
data (i.e. cycles with periods less than 14 years),
(3) Subsequent peak GWPS values were analysed until
their inclusion in the model was not significant, and (4) The
same scale could not appear twice among signals. After
selecting the stationary signals for each catchment, each
signal was added to the model using forward step-wise
regression against the raw water yield data, first with the
non-stationary signal.

Wavelet cross coherence analysis

Wavelet cross coherence analysis was used to understand
the dominant oscillations that have detectable periodic
patterns in the yearly time series of water yield within the
chosen catchments. Wavelet coherence (Torrence and
Hydrol. Process. 27, 669–686 (2013)



Figure 6. Time series of the Multivariate El Niño Southern Oscillation
(ENSO) Index (MEI), Atlantic Multidecadal Oscillation (AMO), Northern
Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO) indices
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Webster, 1999; Grinsted et al., 2004) of two time series X
andY, with wavelet transformsWn

X (s) andWn
Y (s), is defined

as

R2
n sð Þ ¼ S s�1WXY

n sð Þ� ��� ��2
S s�1 WX

n sð Þ�� ��2� �
� S s�1 WY

n sð Þ�� ��2� � (8)

where, S is a smoothing operator both in time and space that
can be written as

S Wð Þ ¼ Sscale Stime Wn sð Þð Þð Þ (9)

where, Sscale denotes smoothing along the wavelet scale axis
and Stime for the time axis.
Equation (8) closely resembles that of a traditional

correlation coefficient. As a result, it is logical to consider
wavelet coherence as a localized correlation coefficient in
time frequency space (Grinsted et al., 2004). The purpose
of a smoothing operator is to help locate local maxima or
high regions in a plot, such as the cross coherence plot.
The operation involves a smoothing or bin parameter,
which determines the number of nearby frequencies,
relative to one of interest, averaged (in a manner
depending on the smoothing filter) to obtain the estimate
of the cross coherence at the given frequency, producing
an estimator that achieves small mean square error, which
simultaneously keeps the variance and bias small.
We used wavelet cross coherence to correlate annual

average indices for water years that were computed from
monthly average indices of large scale climatic oscillations
with the detrended water yield of the chosen catchments at
each period using a Matlab package from Grinsted et al.
(2002). The MEI, AMO, NAO, PDO indices were selected
due to their global influence (Figure 6, Table II). Wavelet
transform plots map the correlations of wavelets of varying
periods with the water yield time series, while wavelet cross
coherence plots map the correlations of wavelets of varying
periods with two different time series, the large scale
climatic oscillations and the local water yield time series. In
both cases, the cone of influence delimits regions of the plot
that can be considered as part of the analysis. By analysing
the plots, significant associations are indicated usingwarmer
colours, and relationships with 95% confidence are circled.
For wavelet cross coherence plots, arrows indicate the
nature of the correlation: arrows to the left indicate negative
correlations and arrows to the right indicate positive
correlations (Grinsted et al., 2004).

Climate drivers of yearly water yield time series

Correlations tests were performed among the global
climate oscillations and between the global climate
oscillations and local meteorological conditions. To
examine correlations among the global climate oscillations,
Pearson product moment correlation tests were performed
between each of the four climate indices selected.
Significant correlations were not expected if the global
climate oscillations were significantly correlated for a short
period (e.g. if they were only strongly correlated for 5 years
Copyright © 2012 John Wiley & Sons, Ltd.
in a 28-year data series). Therefore, significant correlations
among the global climate oscillations occurred only if they
existed for nearly the entire time series.
To examine correlations between the global climate

oscillations and local meteorological conditions, we sought
the longest possible meteorlogical records located near the
four catchments in the TLW: the National Climatic Data
Center’s Global Historical Climatology Network v2
(GHCN-Monthly) station at Sault Ste. Marie, Michigan
(Station identifier 42572734000, with a record from 1889 to
2011) and Environment Canada’s station at Sault Ste.
Marie, Ontario (Station identifier 71260, with a record from
1962 to 2011). Furthermore, data from the Michigan station
were split into two periods (1901–1963 and 1964–2010) to
compare the relationship between AMO and temperature/
precipitation during distinct cycles of the estimated 60- to
90-year AMO global climate oscillation.
RESULTS

There were significant non-stationary signals in water
yields. Catchments showed significant negative linear
Hydrol. Process. 27, 669–686 (2013)



Table II. Large-scale climatic oscillations used for cross-coherence analysis

Indices (data source) Periodicity Climatic influence

Multivariate El Nino Southern
Oscillation (ENSO) Index
(MEI) (NOAA – ESRL,
2012a)

The periodicity of strong ENSO events is
approximately 2 to 7 years (Huggett, 1997).

A positive MEI index (an ENSO episode) is
associated with warmer than normal autumn to
spring temperatures at the study site (Shabbar
and Khandekar, 1996, Shabbar and Bonsal,
2004).

Northern Atlantic Oscillation
(NAO) (NCAR, 2012)

There is no statistically significant periodicity,
although there is some evidence of a 7 to 9 year
and approximately 20-year periodicities
(Burroughs, 2005).

A positive NAO is associated with colder than
normal winters at the study site (Bonsal et al.,
2001).

Pacific Decadal Oscillation
(PDO) (JISAO, 2012)

PDO tends to occur with a periodicity of around
20 to 30 years (Burn, 2008; Mantua and Hare,
2002; Minobe, 1997)

A positive PDO is associated with warmer and
drier winters, while negative phases are
associated with cooler and wetter winters at
the study site (Burn, 2008).

Atlantic Multidecadal
Oscillation (AMO) (NOAA –
ESRL, 2012b)

AMO is characterized by a 60- to 90-year
oscillation (Knudsen et al., 2011).

A positive AMO anomaly is associated with
warmer winters and lower rainfall at the study
site (Knight et al., 2006).
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trends in the yearly water yield time series over the past
28 years (Figure 7). The rate of decline in water yield was
highest (�14.6 mm/year) in the catchment with lower water
loading and lower water storage capacity (c35) (R2 = 0.52,
p< 0.001) and nearly as high (�13.0 mm/year) in the
catchment with similar water loading but higher water
storage capacity (c38) (R2 = 0.44, p< 0.001). In contrast,
the rate of decline in water yields was lowest (no significant
signal) in the catchment with higherwater loading and lower
water storage capacity (c47) (R2 = 0.04, p=0.306), and
higher (�8.9 mm/year) in the catchment with higher water
loading and higher water storage capacity (c50,) (R2 = 0.18,
p< 0.05), but not as high as the lower water loading
catchments. Non-stationary signals were influenced more
by water loading than by water storage capacity.
There were also significant stationary signals in water

yields. The sequence of steps for detecting significant
stationary signals is illustrated for c35 in Figures 8, 9, and
10. After removing the linear trend in the water yield data of
each catchment (Figures 8A–10A), wavelet transforms
(Figures 8B–10B) and peak analysis (Figures 8C–10C)
revealed periods that explained significant amounts of
variance in the detrended water yield. Sine curves were
Figure 7. Non-stationary trends in water yield

Copyright © 2012 John Wiley & Sons, Ltd.
modeled to the detrendedwater yield data (Figures 8D–10D),
and while the autocorrelation function values from the
residuals were all between 0.5 and �0.5 (Figures 8E–10E),
indicating no significant autocorrelation with 95% confi-
dence, the residuals suggested that periodic characteristics
remained, so additional steps were undertaken until fitted
scales were no longer statistically significant.
Each of the four catchments showed three significant

stationary signals with the same periods (i.e. 2 to 2.83
years, 3.36 to 4.76, and 6.73 to 9.51 years), except for
c50, which had a stationary signal of 5.66 to 8 years
instead of 6.73 to 9.51 years (Tables III and IV). The
relative dominance of these three periods varied among
the catchments. The two catchments with lower water
storage capacity (c35, c47) showed the same sequence of
6.73 to 9.51 detected first, followed by 2 to 2.83, and then
3.36 to 4.76 years. In contrast, the two catchments with
higher water storage capacity (c38, c50) showed a
different sequence from both the lower water storage
capacity catchments and each other. The 2 to 2.83-year
signal was detected first in both c38 and c50, but the
sequence was 6.73 to 9.51 then 3.36 to 4.76 in c38 and
the opposite in c50 (Table III). Signals with shorter
for (A) c35, (B) c47, (C) c38, and (D) c50

Hydrol. Process. 27, 669–686 (2013)



Figure 8. Stationary trend analysis for the first signal in c35: (A) c35
yearly detrended water yield data, (B) wavelet transform (from Equation
6) of c35 water yield data [strong and weak contributions to the power
spectrum are indicated by warm (red) colours and cold (blue) colours,
respectively, on a logarithmic scale; the thin solid line represents the cone
of influence, the thick solid lines show the 95% significance level],
(C) scale selection based on Global Wavelet Power Spectrum [the dotted
line at 14 years indicates the cutoff for selecting periods of signals (half the
28-year time series)], (D) modeling the sine function to the detrended water
yield data, and (E) Auto-correlation function analysis for the residuals
between the observed andmodeledwater yield. Subsequent steps repeated the

same process until fitting scales were no longer statistically significant

Figure 9. Stationary trend analysis for the second signal in c35: (A) c35
yearly detrended water yield data, (B) wavelet transform of c35 water
yield data, (C) scale selection based on Global Wavelet Power Spectrum,
(D) modeling the sine function to the detrended water yield data, and
(E) Auto-correlation function analysis for the residuals between the observed

and modeled water yield
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periods dominated the detrended water yield time series
in catchments with high water storage capacity, while the
signals with longer periods dominated the time series in
the catchments with small wetlands.
The combination of non-stationary and stationary

signals explained the majority of variation in water yields
for each of the four catchments: 81% (c35), 76% (c38),
56% (c47), and 63% (c50) (Figure 11, Table IV). For
catchments with lower water loading (c35, c38), the non-
stationary signal was higher than the combination of
stationary signals. For c35 (low water storage capacity),
the non-stationary signal explained 52% of the temporal
variation in water yields, while the stationary signals
together explained an additional 29%. For c38 (high
water storage capacity), the relative importance of the two
Copyright © 2012 John Wiley & Sons, Ltd.
signals shifted slightly, with the non-stationary signal
explaining 44% of the temporal variation in water yields,
while the stationary signals together explained an
additional 32%. In contrast, for catchments with higher
water loading (c47, c50), the non-stationary signals were
lower than the combination of stationary signals. For c47
(low water storage capacity), the non-stationary signal
explained no variation in water yields, while the
stationary signals explained 56% of the variation in water
yields. Similarly, for c50 (high water storage capacity),
the non-stationary signal explained 18% of the variation
in water yields, while the stationary signals explained an
additional 45% of the variation in water yields (Table IV).
The modeled water yields represented the observed water
yields in each of the four catchments; however, the
modeled water yield sometimes failed to capture peak
water yield, particularly in the catchments with high water
loading, c47 (e.g. 2003 peak) and c50 (e.g. 1997 peak)
(Figure 10).
Hydrol. Process. 27, 669–686 (2013)



Figure 10. Stationary trend analysis for the third signal in c35: (A) yearly
detrended water yield data, (B) wavelet transform of c35 water yield data, (C)
scale selection based onGlobalWavelet Power Spectrum, (D)modeling the sine
function to the detrended water yield data, and (E) Auto-correlation function

analysis for the residuals between the observed and modeled water yield
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The wavelet cross coherence plots revealed complex
interactions between water yield and global climate
oscillations (Figures 12–15). For each of the four
catchments, there were significant correlations between
each of global climate oscillations and water yields:
(1) MEI was highly correlated to water yields at periods
of 2 to 3.5 years, particularly in the 1990s (coincident
with PDO), with higher MEI resulting in lower water
yields (Figure 12A–15A); (2) AMO was correlated to
water yields at periods of 3 to 5 years, although the
correlations were stronger at the beginning of the time
series compared to the end of the time series, with higher
AMO resulting in lower water yields (Figure 12B–15B);
(3) NAO was correlated to water yields at periods of 3 to
4.5 years, particularly in the first half of the time series;
however, the nature of the correlation was unclear (arrows
in different directions) (Figures 12C–15C); and (4) PDO
was highly correlated to periods of 2 to 3.5 years,
particularly during the 5-year window from 1998 to 2003,
with higher PDO resulting in lower water yields
(Figures 12D–15D).
Copyright © 2012 John Wiley & Sons, Ltd.
There were significant interactions among major climatic
oscillation indices (i.e. MEI, AMO, NAO, and PDO)
(Table V). The Pearson product moment correlation
between the annual average values of the climate oscilla-
tions revealed significant correlations between the MEI and
PDO (p< 0.001) and the NAO and PDO (p< 0.05). Of the
12 stationary signals observed in water yield data, six were
significantly correlated with a climatic index (Table VI).
MEIwas the indexmost often strongly correlatedwithwater
yield (seven times total with four correlations being
significant).
Comparing meteorological records at nearby stations

with the major climatic oscillation indices, only the AMO
index was significantly linked to temperature and
precipitation at the TLW meteorological station.
Temperature and the AMO index were positively linked
from 1981 to 2008 (R2= 0.46, p< 0.001). This positive
relationship was confirmed using the longer records of the
Sault Ste. Marie, Michigan station (1889–2010, R2 = 0.19,
p< 0.001) and the Sault Ste. Marie, Ontario station
(1962–2010; R2= 0.35, p< 0.001). Precipitation and the
AMO index were negatively linked at the TLW station
(R2= 0.34, p< 0.001), though no significant relationships
were observed with data from the Michigan or Ontario
stations.
Splitting the Michigan meteorological data according to

distinct AMO cycles (1901–1963 and 1964–2010) revealed
a change in the relationships. Split temperature records
confirmed consistent positive relationships between the
AMO index and temperature (Figure 16A), but split
precipitation records indicated that from 1901 to 1963,
AMOwas significantly positively correlated to precipitation
(R2=0.16, p< 0.05), but during 1964 to 2010, AMO was
negatively correlated with precipitation (R2 = 0.08,
p< 0.05) (Figure 16B). Looking at the complete AMO
cycle from 1901 to 1963 versus temperature (Figure 16A),
the minimum AMO value of �0.39 corresponds to an
interpolated temperature value of 3.81 �C and the maximum
AMO value of 0.36 corresponds to a temperature value of
4.96 �C. The difference of 1.15 �C over 31 years (half the
AMO period) indicates that 0.037 �C per year in climate
warming can be explained by a shift from a low point in the
AMO cycle to a high point, about 55% of the observed
0.067 �C per year observed in the TLW (Figure 3).
DISCUSSION

This paper examined the effects of changing climatic
conditions on water yields from headwater catchments on
a natural (undisturbed) northern forested landscape.
Northern latitudes are expected to see substantial
environmental changes based on projected climate change
scenarios (Carey et al., 2010). We were interested to see if
and how these effects are already being manifested. By
focusing on headwater catchments on natural landscapes,
we examined the hydrological systems that are most
sensitive and that have the potential to serve as early
warning sentinels of climate change effects to more
Hydrol. Process. 27, 669–686 (2013)



Table III. Global wavelet power spectrum (GWPS) values of water yield generated from Equation 6 in catchments c35 (A), c38 (B),
c47 (C), and c50 (D). The detrended water yield was used to generate the first signal from the wavelet transform. Water yield used for
subsequent signals is the difference between water yield from the previous step and modeled water yield at the step of investigation. The
highlighted values indicate the peak GWPS values selected as the stationary signal in each step. See Figures 5–7 for sample peak

selection
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regional catchments, including those that provide water
supplies to downstream communities.
Climate change has effects on water yields

The analytical framework outlined in this paper
(Figure 5) enabled the detection of climate signals in
the water yields of four catchments in the TLW. The
framework detected non-stationary linear trends, then
after removing these trends, detected stationary non-linear
cycles caused by climate oscillations. Without applying
this framework, these climate signals would not have
been identified, discriminated, nor quantified from the
original time series of water yields.
Climate had a substantial non-stationary effect on water

yields. A shift to warmer and drier conditions resulted in a
linear decline in water yields that ranged from 0% (c47)
to 52% (c35). This decline of yearly water yield may be
Copyright © 2012 John Wiley & Sons, Ltd.
related to a unidirectional change towards warmer and
drier conditions over the past 28 years. However, climate
also had a substantial stationary effect on water yields.
Multiple scales of nested periodic cycles were detected in
the water yield data, explaining variation in addition to
the non-stationary trends that ranged from c35 (29%) to
c47 (56%). The three periodic cycles, which occurred
from 2 to 2.83 years, 3.36 to 4.76 years, 6.73 to 9.51
years, were found in all catchments, except for c50, where
the longest periodic trend was 5.66 to 8.00 rather than
6.73 to 9.51. A comparison of the periods from the
wavelet analysis (Figures 8–10, Table III) and the wavelet
cross coherence analysis (Figures 12–15) suggests that
the 2 to 2.83-year signal was influenced by the MEI and
PDO; the 3.36 to 4.76-year signal was influenced by the
AMO; and the 6.73 to 9.51-year signal was influenced
partially by the NAO, though it was only strongly
correlated to water yields for the higher water loading
Hydrol. Process. 27, 669–686 (2013)



Table III. (Continued)
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catchments, c35 and c38. A 28-year dataset is particularly
short for wavelet analysis. It is likely that signals with
longer periods are also present, but they could not be
detected with the data available.
Climate change results in differential responses among
catchments

There were substantial differences in the non-stationary
rate of decline and a marginal difference in stationary
oscillations in water yield signals among the catchments,
despite their close proximity (Figure 7, Table IV).
Catchments with lower water loading were more sensitive
to the non-stationary climate signals (Table IV), showing
declines in water yields of �14.6 mm/year (c35) and
�13.0 mm/year (c38). Our findings suggest that there is a
higher rate of change in net water loading (precipitation
minus evapotranspiration and sublimation) on sites that
experience less overall water loading, leading to a higher
rate of change in catchment water yields at low water
loading sites compared to higher water loading sites.
Copyright © 2012 John Wiley & Sons, Ltd.
Catchments with wetlands formed by topographic
depressions and/or flats store water (Lindsay et al.,
2004; Creed et al., 2003; 2008). Catchments with higher
water storage capacity buffered the effects of climate
warming. The declines in water yield in catchments with
lower water loading (c35 and c38) were of a greater
magnitude than in those with higher water loading (c47
and c50). For the catchments with lower water loading
(c35, c38), a lower water storage capacity increased the
amount of variation explained in water yields attributed to
non-stationary signals (52% for c35 vs 44% for c38), but
increased the amount of model variation attributed to
stationary signals (an additional 29% for c35 vs 32% for
c38). For the catchments with higher water loading (c47,
c50), a lower water storage decreased the amount of
variation explained in water yields attributed to non-
stationary signals (0% for c47 vs 18% for c50), and
increased the amount of model variation attributed to
stationary signals (an additional 56% for c47 and 45% for
c50). Higher water storage capacity appeared to reduce
the effects of shorter periods on discharge, perhaps
Hydrol. Process. 27, 669–686 (2013)



Table IV. Results of forward step-wise regressions of non-stationary (linear) and stationary (periodic) trends in raw water yield data
from catchments c35, c38, c47, and c50 in the Turkey Lakes Watershed. Data reported are R2 values (NS indicates not significant;

* indicates p< 0.05; ** indicates p< 0.01; and *** indicates p< 0.001)

c35 c38 c47 c50

Slope of Linear Trend (mm/year) �14.8 �13.0 NS �8.9
Individual R2 values
Linear Trend versus Raw Q 0.52*** 0.44*** NSa 0.18*

Signal 1 versus Raw Q – Linear trend 0.27** 0.26** 0.19* 0.26**

Signal 2 versus Raw Q – Linear trend, Signal 1 0.31** 0.26** 0.23** 0.28**

Signal 3 versus Raw Q – Linear trend, Signal 1, 2 0.19* 0.26** 0.32** 0.15*

Signal 4 versus Raw Q – Linear trend, Signal 1, 2, 3 NS NS NS -b

Cumulative R2 values versus Raw Water yield
Linear trend 0.52*** 0.44*** NSa 0.18*

Linear trend + Signal 1 0.65*** 0.59*** 0.19 * 0.39***

Linear trend + Signal 1 + Signal 2 0.76*** 0.68*** 0.38*** 0.56***

Linear trend + Signal 1 + Signal 2 + Signal 3 0.81*** 0.76*** 0.56*** 0.63***

a The Linear trend in the c47 water yield data was not significant, so subsequent analysis does not include the linear trend
b The complete peak for Step 4 in c50 fell outside the window of investigation (i.e. included a scale with a period of more than 14 years), and all other
scales had already been included in previous steps (see Table IIID), so this step was not performed.

Figure 11. Time series for the observed and modelled yearly water yields over the study time period for the catchments (A) c35, (B) c47, (C) c38, and
(D) c50
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reflecting the buffering capacity of storage capacity on
water discharge fluctuations associated with shorter term
periods but not longer term periods.
Our study indicates that drier (lower water loading)

catchments with minimal water storage capacity may be
better sentinels of climate change in humid regions. The
catchment with the lower water loading and lower water
storage capacity (c35) was the most sensitive to the non-
stationary signal (decline in water yield of �14.6 mm/
year) and was the catchment for which we were able to
explain the most variation (81%) in water yields through a
combination of the non-stationary and stationary signals.
In contrast, the catchment with higher water loading and
lower water storage capacity (c47) was the least sensitive
to the non-stationary signal (no significant decline in
water yields), and only 56% of the variation in water
yields could be explained through a combination of non-
stationary and stationary signals. It is difficult to compare
our findings with similar studies in the region or
elsewhere because there are few studies that investigate
the effect of catchment water loading on climate change
Copyright © 2012 John Wiley & Sons, Ltd.
related water yield responses. Nonetheless, our study
clearly shows that the climatic characteristics of a region
within which a catchment is located must be considered
prior to selecting the best sentinel for climate change.
Global drivers of local responses in water yields

In the last few decades, scientists have recognized the
effects of global climate oscillations on regional climate,
particularly on the inter-annual variability of temperature
and precipitation in regions thousands of kilometers away
from the sites of the initial fluctuations (Ropelewski and
Halpert, 1996; Shabbar et al., 1997; Ionita et al., 2012; Zhou
et al., 2012). Furthermore, the effects of global climate
oscillations on hydrology and associated hydroecological
processes of water bodies are well documented (Foley et al.,
2002; Kawahata and Gupta, 2003; Kondrashov et al., 2005;
Labat, 2008; Keener et al., 2010). We contributed to this
body of knowledge by exploring the effects of global
climate oscillations on headwater catchment water yields
with a local watershed.
Hydrol. Process. 27, 669–686 (2013)



Figure 12. Cross coherence plots using Morlet mother wavelets to generate wavelet power spectra [from Equation (11)] show correlations at each period
between yearly water yield of c35 and (A) MEI, (B) AMO, (C) NAO, and (D) PDO. The thin solid line represents the cone of influence, the thick
contours indicate the 95% significance level, arrows show the relative phase relationship (left arrows for negative correlations and right arrows for

positive correlations). Warm colours indicate strong correlations and cool colours indicate weak relationships along a linear scale

Figure 13. Cross coherence plots using Morlet mother wavelets to generate wavelet power spectra [from Equation (11)] show correlations at each period
between yearly water yield of c38 and (A) MEI, (B) AMO, (C) NAO, and (D) PDO. The thin solid line represents the cone of influence, the thick
contours indicate the 95% significance level, arrows show the relative phase relationship (left arrows for negative correlations and right arrows for

positive correlations). Warm colours indicate strong correlations and cool colours indicate weak relationships along a linear scale
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The non-stationary trend was linked to climate warming.
One of the original assumptions of this research is that at
least part of the observed increase in temperature in the
TLW (0.067 �C per year, Figure 3) is being caused by
Copyright © 2012 John Wiley & Sons, Ltd.
anthropogenic climate warming. We were able to show that
the AMO index and temperature are significantly correlated
both using the TLW data and the longer term data from the
Sault Ste. Marie, Michigan weather station over two distinct
Hydrol. Process. 27, 669–686 (2013)



Figure 14. Cross coherence plots using Morlet mother wavelets to generate wavelet power spectra [from Equation (11)] show correlations at each period
between yearly water yield of c47 and (A) MEI, (B) AMO, (C) NAO, and (D) PDO. The thin solid line represents the cone of influence, the thick
contours indicate the 95% significance level, arrows show the relative phase relationship (left arrows for negative correlations and right arrows for

positive correlations). Warm colours indicate strong correlations and cool colours indicate weak relationships along a linear scale

Figure 15. Cross coherence plots using Morlet mother wavelets to generate wavelet power spectra [from Equation (11)] show correlations at each period
between yearly water yield of c50 and (A) MEI, (B) AMO, (C) NAO, and (D) PDO. The thin solid line represents the cone of influence, the thick
contours indicate the 95% significance level, arrows show the relative phase relationship (left arrows for negative correlations and right arrows for

positive correlations). Warm colours indicate strong correlations and cool colours indicate weak relationships along a linear scale
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AMO cycles (1901 to 1963 and 1963 to 2010). By using the
longer term data, we were able to show that temperature at
the minimum AMO values increases by approximately
0.037 �C per year until the maximum AMO values
Copyright © 2012 John Wiley & Sons, Ltd.
(approximately 30 years). Coincidentally, the TLW data
record (1981 to 2008) corresponded with an AMO
minimum to maximum half cycle (Figure 6), meaning that
the TLW was being affected both by strong non-stationary
Hydrol. Process. 27, 669–686 (2013)



Table V. Pearson product moment correlations between the
annual average values of Multivariant El Niño Southern
Oscillation (ENSO) Index (MEI), Atlantic Multidecadal
Oscillation (AMO), Northern Atlantic Oscillation (NAO),
and Pacific Decadal Oscillation (PDO) (* indicates p< 0.05;

*** indicates p< 0.001)

MEI AMO NAO PDO

MEI – �0.152 0.011 0.600***
AMO – – �0.387 �0.314
NAO – – – �0.387*
PDO – – – –
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and stationary signals. We estimate that of the 0.067 �C per
year increase in temperature observed from 1981 to 2008,
0.037 �Cper year can be explained by theAMO index (from
interpolated temperatures of 3.81 �C at the minimum AMO
value and 4.96 �C at the maximum value over a 31-year
half-cycle, Figure 16A), leaving 0.030 �C for other causes,
including anthropogenic climate change. It is possible that
some of the increase in temperature ascribed toAMO is also,
at least in part, caused by anthropogenic climate change. For
example, Guan and Nigam (2009) state that non-stationary
trends, such as anthropogenic climate warming, can affect
Atlantic Sub-surface Temperature, potentially aliasing
effects of global warming into natural climate oscillations.
The stationary trend was linked to global climate

oscillations, with the highest frequency (2 to 3.6 years)
associated withMEI and PDO, amoderate frequency (3.5 to
6 years) associated with AMO, and the lowest frequency
(6.73 to 9.51) associated with NAO. Each of these global
climate oscillation indices was correlated to local water
yields, but the timing, persistence, and direction of
correlations varied. From the complex patterns in the
wavelet cross coherence plots (Figures 9–12), the following
generalizations were made: (1) The period of high, negative
correlations between MEI or PDO and water yields was
longer in duration in the lower water loading catchments
(c35, c38) compared to higher water loading catchments
(c47, c50) – as theMEI or PDO increase, climate is warmer,
drier and water yields decrease; (2) The period of high,
Table VI. Correlations between climatic indices and the identified sta
demonstrating the indices that ar

Catchment Stationary signal Periods (years) Stronge

c35 1 6.73 to 9.51
2 2 to 2.83
3 3.36 to 4.76

c38 1 2 to 2.83
2 6.73 to 9.51
3 3.36 to 4.76

c47 1 6.73 to 9.51
2 2 to 2.83
3 3.36 to 4.76

c50 1 2 to 2.83
2 3.36 to 4.76
3 5.66 to 8

Copyright © 2012 John Wiley & Sons, Ltd.
generally negative correlations between the AMO andwater
yields was shorter in duration in the lower water loading
catchments (c35, c38) compared to higher water loading
catchments (c47, c50) – as the AMO increases, the climate
gets warmer with less rain andwater yields decrease; and (3)
The period of high, generally positive correlations between
the NAO and water yields was longer in duration in the
lower water storage capacity catchments (c35, c47)
compared to higher water storage capacity catchments
(c38, c50) – as the NAO increases, climate is cooler, wetter
and water yields increase. Global climate oscillations have
prolonged effects on water yields from catchments with
lower water loading (c35, c38) and lower water storage
capacity (c35, c47).
Some of the global climate oscillation indices had

interactive effects. The positive correlation between the
MEI and PDO indicates that as theMEI increases (reflecting
warmer, drier conditions) or decreases (reflecting cooler,
wetter conditions), the effects on climatic conditions may be
amplified by the PDO. The negative correlation between the
NAO and PDO indicates that as the NAO index increases
(reflecting cooler, wetter conditions) or decreases (reflecting
warmer, drier conditions), the effects on climatic conditions
may be amplified by the PDO (Table V).

Future consideration of finer time series of water yield data

This study used yearly time series of water yields rather
than finer time scales. In our data analysis, the residuals
(observed data minus trend) are consistent with white
noise, but there may be additional features that this type
of data cannot detect, for example persistent wetness
levels over a period of a few months. Future work using
finer time scales may reveal if there is a stochastic
persistence such as autoregressive time series dependence
in the noise, or if there is coherence with respect to other
climate oscillation indices such as NOA or PDO on this
finer scale. The cross coherence analysis shows there is
some correlation or dependence between the catchment
data and the global climate oscillation indices. In future
studies that focus on intra-annual data, we will explore if
there is lag dependence between the catchment data and
tionary signals for four catchments in the Turkey Lakes Watershed
e the most strongly correlated

st correlated index R2 (Direction of correlation) p

PDO 0.220 (+) 0.013
MEI 0.026 (-) 0.414
MEI 0.150 (-) 0.039
NAO 0.010 (-) 0.619
AMO 0.250 (-) 0.007
MEI 0.240 (-) 0.009
NAO 0.009 (-) 0.636
MEI 0.014 (-) 0.552
MEI 0.210 (-) 0.015
MEI 0.012 (-) 0.575
MEI 0.210 (-) 0.014
PDO 0.054 (-) 0.232
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Figure 16. Regressions between the AMO Index and the mean annual
precipitation (A) and temperature values (B) from the Sault Ste. Marie,
Michigan weather station during two distinct AMO cycles (1901–1964

and 1964–2010)
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previous values of these indices. We have not checked the
cross coherence of the indices with the residuals due to
the length of the time series and the fact that the residuals
are consistent with white noise. This additional step
would be interesting to see if the regression mean
estimates account for the influence of the climate
oscillation indices, or if there is further dependence.
Critical need for long-term monitoring recordsA

limitation of the presented analyses (and similar analyses
in other studies) is the short length of the available data
time series. The TLW has one of the longest monitoring
records in Canada (Creed et al., 2011); even so, it does
not allow for full consideration of some of the multi-
decadal global climate oscillations. For example, the MEI
has a 2- to 7-year cycle (Huggett, 1997); NAO has no
statistically significant periodicity, although there is some
evidence of a 7- to 9-year and approximately a 20-year
cycle (Burroughs, 2005); PDO has a 20- to 30-year cycle
(Burn, 2008); and AMO has a 60- to 90-year cycle
(Knudsen et al., 2011). Complete cycles for MEI and
NAO only would be captured in the 28-year record for the
TLW. A potential danger of this short time series is that
the apparent non-stationary signal may exaggerate the
stated influence of climate warming. Even still, with an
observation window that included only half of the AMO
cycle, we were able to observe significant correlations
between climate and the AMO index and to ascribe more
than half the non-stationary temperature increase in the
TLW to this relationship. Continued support and
Copyright © 2012 John Wiley & Sons, Ltd.
investment in long-term catchment studies, and analysis
of social factors that influence water supply and demand,
will help civic institutions adapt to future scenarios of
climate and land-use change (Creed et al., 2011; Jones
et al., 2012).
CONCLUSIONS

Climatic change has complex influences on headwater
catchment water yields. To determine effects of climate
change, we must be able to discriminate between
anthropogenic climate warming (non-stationary trends)
and natural climate oscillation (stationary cycles) signals
on catchment water yields from catchments. Using
our analytical framework, we were able to show that:
(1) headwater catchments showed a general non-stationary
decline in water yields, which may have been caused by
the 1 degree Celsius per decade climate warming that has
occurred within the region; however, individual catch-
ments varied in their responsiveness to climate change,
with catchments that have lower water loading and
lower water storage capacity being the most sensitive;
(2) headwater catchments showed stationary cycles in
water yields caused by specific climate oscillations or
possibly the interactive impacts of multiple global climate
oscillations, which are sometimes significantly correlated
with each other; and (3) by combining the models of
stationary and non-stationary signals identified, it was
possible to explain the majority of the variance in water
yields within each catchment. AMO was identified as
the index most closely associated with climate in the
TLW, and it explained approximately 0.037 �C of the
observed 0.067 �C per year increase in temperature from
1981 to 2008. The methodology developed in this
study can be used not only to understand hydrologic
responses to climate change, but also associated
biogeochemical responses, including carbon, nitrogen,
and phosphorus export. Future work will extend the
analytical framework to include seasonal, monthly, and
daily data as well as predicting both water and solute
yields from headwater catchments within the TLW and
will apply this methodology to other catchments from
long-term monitoring stations with the longest available
records in forested landscapes across northern latitudes
in North America.
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